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Introduction

Setting the landscape : System-on-Chip Integration Trend

July 10, 2018 06:37 ET | Source: Energias Market Research

NEW YORK, July 10, 2018 (GLOBE NEWSWIRE) -- The global system-on-chip

(SoC) market was valued at USD 33.4 billion in 2017 and is

expected to reach USD 128.1 billion by 2024, at a CAGR of 19.3%

Time frame Nb of SoCs Devices Device Maker
2012-2018 22 Kirin HiSilicon (Huawei)
2007-2018 29 APLx Apple
2012-2016 33 Atom Intel
2000-2018 46 SxC and Exynos Samsung
2003-2019 120 MTx Mediatek
2007-2018 136 Snapdragon Qualcomm

(source: Wikipedia articles of the respective device families)
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Introduction

Modern SoCs

Characteristics
Highly programmable
Include several to many processors
With plenty of IPs, some legacy, some ad-hoc
Based on a few processor architectures :

ARM : more or less in every market
Power : avionics, automotive, servers
MIPS : consumer, networking, automotive
Sparc : space
RISC-V : hard drives :-)

A Small Example : STM32Fxx SoC
' 30 IPs
' 460 registers in IPs
??? fields in registers (count hard to automate)
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Modern SoCs

Characteristics
Highly programmable
Include several to many processors
With plenty of IPs, some legacy, some ad-hoc
Based on a few processor architectures :

ARM : more or less in every market
Power : avionics, automotive, servers
MIPS : consumer, networking, automotive
Sparc : space
RISC-V : hard drives :-)

How to make sure that the system works?
Integration issue, not IP per IP validation
Need to check interactions within the system
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Introduction

SoC vs PCB

System-on-Chip
Single piece of silicon that includes all electronic components (cpus, memories, peripherals, ...)
required to build a system (product)

System-on-Chip / = Printed-Card-Board
Connections ∞
Capacitances≈ 0 (although DRAM stays, as of now, external)
Industrialisation =⇒ cost  0

Modification after fabrication impossible !
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Introduction

Design complexity increases I

Technology push
Number of transistors : +100% every 18 months (Moore’s Law)
- soon enough it will be over !
Design productivity : +30% per year

⇒ Design Productivity Gap
Constant need for new design techniques and tools
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Introduction

Design complexity increases II

Circuit complexity push
Hardware integration of huge circuits

Many complex elements : processors, interconnects, ...
Many CPU sub-systems in current SoC (CPU+DMA+Memory+...)
Massively parallel integrated computers at hand

VHDL/Verilog hardly do the job, as by the way to System-Verilog or Chisel
Even connecting things together becomes an issue
Nothing like "gates to rtl" for system-level implementation yet
HLS solves some issues, but not so many (sorry Philippe!)
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What is simulation useful for?

Simulation goals I

Two main goals

Dimensioning the system
Helps a lot for deciding µArch/Arch parameter values
Bus width, cache size and geometry, number of issues, ...
⇒ Goal is to make educated guesses !

Functionality not necessary
⇒ Software doesn’t actually run on it !
Either sampling and replay samples
Or traffic generation following probability laws

Purely performance estimation oriented
At the end of the day, a replacement to expert excel sheets
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What is simulation useful for?

Simulation goals II

Virtually prototype the system
Check system consistency
HW/SW relationships, memory maps, device access, ...
Goal is to ensure system bring-up in days!

Ensures functional correctness of the system
Runs software on top of hardware models
Would also like to get figures of merit !

Wants both correct function and accurate estimates
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Simulation approaches

Sample based simulation I

Mainly used in CPU µ-architectural research
Based on the central limit theorem
And on other statistical approaches : χ2, clustering, etc

Sample-base simulation principle
Record architectural snapshots
On actual processor, FPGA, Functional
simulators
And replay snapshots on detailed µArch
simulator, HW emulator, ...

(source: "SMARTS : Accelerating microarchitecture simulation

via rigorous statistical sampling", Wunderlich et al., ISCA’03)
(source: Cdang, Wikipedia)
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Simulation approaches

Sample based simulation II

Issues
Quality of the samples
Profile based characterization

Branch mis-prediction behavior
Intrinsic ILP or spatial/temporal locality, data reuse distance

Random time sampling
Well, random :-)

Periodical sampling
Allows for speed/accuracy trade-offs
Periodical behavior or phases should not match sampling period!

Multi-thread cores and Multicores
Very few approaches devised
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Simulation approaches

Reduced input set/Truncated simulation approaches I

Reduced input set
Limit the size of the working set : smaller arrays/matrices, files, etc
Keep statistically similar execution profiles
Not so easy⇒ define the metrics are of interest, and evaluate them all
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Simulation approaches

Reduced input set/Truncated simulation approaches II

Truncated simulation
Run Z
Simulate accurately the first Z million contiguous instructions
Fast-forward X + Run Z
Simulate functionally the X first million instructions
and accurately the following Z millions
Fast-forward X + Warm-up Y + Run Z
Simulate functionally the X first million instructions
and accurately the following Y million without recording statistics,
and then the following Z millions
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Simulation approaches

Virtual prototyping

Targets full digital system simulation
Discrete event based

Approaches
Cycle-accurate, bit-accurate (CABA)

Signal based, cycle per cycle⇒many events, sloooooowwww
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Simulation approaches

Virtual prototyping

Targets full digital system simulation
Discrete event based

Approaches
Transaction Level Modeling (TLM)

(source: STMicroelectronics)

Transactions based⇒ few events, fast
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Virtual prototyping

Hardware/software design flow

Courtesy of Matthieu Moy (LIP)
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Virtual prototyping

Stringent constraints on the development cycle

Quick changes in business trends :
Touch/fold screens, high-density pixels, AI in ’yni’, ...
Some deadlines shall not be missed :
Christmas, Chinese New Year, Consumer Electronics Show in Las Vegas, ...

⇒ A product that misses its deadline can bankrupt a company :
"One week late, one year late" !

⇒ "Time to market" demands ad-hoc design methods and large design teams
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Virtual prototyping

How much does an error cost?

Software bug

Firmware/Embedded software update

Sometime easy to realize
Your smartphone, your box, your Alexia

Sometimes not :
Your car, your credit-card, a plane, an orbiter
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Virtual prototyping

How much does an error cost?

Software bug

Firmware/Embedded software update

Sometime easy to realize
Your smartphone, your box, your Alexia

Sometimes not :
Your car, your credit-card, a plane, an orbiter

Hardware bug
Respin at foundry
Cost issues :

Feature size 0.25 µm 0.13 µm 65 nm
1 layer mask cost $10 000 $30 000 $75 000
Layers 12 25 40
Total cost $120 000 $750 000 $3 M

source EETimes
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Virtual prototyping

How much does an error cost?

Hardware bug
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Virtual prototyping

How much does an error cost?

Hardware bug
Already fabricated circuit : search for a workaround

Software trick, slower but viable
Engineering change order (ECO) for mask modification
Metal patches, spare cells, ...

SoC FPGA
ARM Excalibur : ARM 922 (200 MHz) + FPGA APEX 20KE
Xilinx Virtex 4 : PowerPC 405 (450 MHz) + FPGA + Ethernet MAC
But
- FPGA cost>> 10× ASIC fabrication cost for high-volume
- FPGA power consumption>> 10× ASIC power consumption

F. Pétrot (TIMA Lab, Grenoble-INP) HW/SW Simulation 18 / 54



Virtual prototyping

How much does an error cost?
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Virtual prototyping

Challenges

When using a SoC
Debugging software on the hardware is a pain!

Boot time configuration : IP reset order, IP clock settings, system setup, ...
IP usage, register write-order or timing, drivers, ...
Software races, ...

Developers accesses to the board is “sequential”
And often require a complex setup

When designing a SoC
Design space exploration

No actual hardware, unreliable hardware, complex setup
Co-design issues :

Hardware/Software partitioning
Which IP kind, which actual IP
Evaluation of performance metrics

Early software development (see above)
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Modeling for ESL Simulation
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Modeling for ESL Simulation

Simulation to our rescue

A technology that spans all aspects of the design and validation of electronic systems

Within this presentation
Simulation of digital hardware/software systems that

connect several IPs
contain several processors
that are actually running code

Higher level than RTL
With a focus on fast (and functional) simulation of software on top of hardware
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Modeling for ESL Simulation

Target : Design issues

Simulation speed
Whole SoC simulation at RTL : several days, if not weeks, . . .
Encoding and decoding a single 1280x720 MPEG 4 image
1 h using RTL simulation (courtesy of STMicroelectronics)
No way to test a reasonable OS or even embedded software at this pace
Not enough time to validate software and hardware/software integration
Partition design in blocks and reuse existing ones
Some workarounds

Cosimulation
Hardware emulation
Hardware in-the-loop for legacy IPs
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Modeling for ESL Simulation

Abstraction levels

MPEG 4 image encoding and decoding
(source: STMicroelectronics (hence the legend in French))

Modeling
Time Gain
RTL 1
CABA 3
TLM 10
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Modeling for ESL Simulation

Estimating Non-functional metrics

Accurate estimation challenging

Speed vs. Accu

Timing (latency,
throughputs, delays)
Energy/Power
Temperature

« Truth . . . is much too complicated to allow anything
but approximations », John Von Neumann, 1947
« All models are wrong; some models are useful »,
George E. P. Box, 2005
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Modeling for ESL Simulation

Target : Integration issues

Functional
Separated IP design, reuse of existing IPs
Hard to ensure that integration works out of the box
Not only electrical problems

Performances
Capability of a set of IPs to realize a task in a given time
Complex non-functional dependencies
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Modeling for ESL Simulation

Target : Validation issues

Is the system compliant to its specifications?
Specs are more and more complex

Audio and video standards : MPEG x, H264, HEVC . . .
Weird use cases
Spec interpretation issues

Data volume is increasing : HD, FHD, 4k, 8k, ...
How do you specify the specifications?
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Hardware/Software Simulation
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Hardware/Software Simulation

Hardware/Software Simulation

Clarification
Simulation : software model of a hw/sw system
Emulation : hardware part of a hw/sw system executed on a specific FPGA platforms

Host : machine on which the simulation runs
Target : machine which is simulated

Hypothesis
Event-driven simulation

High abstraction level to ensure speed of simulation
Software is a first class citizen

Binary executed on a model of the processor(s)

F. Pétrot (TIMA Lab, Grenoble-INP) HW/SW Simulation 28 / 54



Hardware/Software Simulation

Hardware/Software Simulation

Clarification
Simulation : software model of a hw/sw system
Emulation : hardware part of a hw/sw system executed on a specific FPGA platforms

Host : machine on which the simulation runs
Target : machine which is simulated

Hypothesis
Event-driven simulation

High abstraction level to ensure speed of simulation
Software is a first class citizen

Binary executed on a model of the processor(s)

F. Pétrot (TIMA Lab, Grenoble-INP) HW/SW Simulation 28 / 54



Hardware/Software Simulation

Software simulation technologies
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Hardware/Software Simulation

Dynamic Binary Translation Principle

Instruction Interpretation Process

Code Generation Example
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Hardware/Software Simulation
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Instruction Interpretation Process

Code Generation Example
18 target_insn_x uop_a
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Hardware/Software Simulation

Dynamic Binary Translation Principle

Instruction Interpretation Process

Fetch Decode Branch?

PC
already
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Execute
No

No

micro-ops
buffer  

 

Tiny code
generator

Yes

Binary Translation

Code Generation

TB Cache Entry

Translation Cache
(host binary code)

Micro-operations
built-in

Yes

Target binary
code (.elf)

Instruction

Code Generation Example
18 target_insn_x uop_a
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Hardware/Software Simulation

Dynamic Binary Translation Principle

Instruction Interpretation Process

Code Generation Example
18 target_insn_x uop_a 1c target_branch

uop_b

uop_c
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Hardware/Software Simulation

Dynamic Binary Translation Principle

Instruction Interpretation Process

Code Generation Example
18 target_insn_x uop_a 1c target_branch uop_d

uop_b uop_e

uop_c
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Hardware/Software Simulation

Dynamic Binary Translation Principle

Instruction Interpretation Process

Code Generation Example
18 target_insn_x uop_a 1c target_branch uop_d

uop_b uop_e

uop_c

host_insn_a.1 host_insn_c.1 host_insn_d.2

host_insn_a.2 host_insn_c.2 host_insn_e.1

host_insn_b.1 host_insn_c.3 host_insn_e.2

host_insn_b.2 host_insn_c.4 host_insn_e.3

host_insn_b.3 host_insn_d.1
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Hardware/Software Simulation

QEMU-SystemC Integration Example

SystemC wrapper : QEMU platform
Shares QEMU "runtime" and translation
cache

Contains a SystemC wrapper for each
processor (including its MMU)

Connected to interconnect to
communicate with SystemC hardware
components

SystemC wrapper : processors
Simulates independently under SystemC
control

Accesses SystemC components by
mapping ranges of physical addresses as
I/O (except main memory)

TLM components
Either in SystemC or in QOM, your call !

Benefits from QEMU existing models
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Hardware/Software Simulation

DBT/Discrete Event Integration

Consequences
Zero time translation-block interpretation
Execution directly on the host, with TB chaining
No way for a simulation kernel to step in

⇒ Synchronization with IPs to be defined

Two approaches
"Closed-loop" timing-aware simulation :
Timing computed during simulation influences future behaviors
"Open-loop" strategy :
Generate memory access traces and computes behavior off-line :
No influence on future behaviors
Often used in general purpose computer-architecture research
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Hardware/Software Simulation "Closed-loop" approach

DBT/DE Synchronization

Synchonization points
Cache misses (instruction and data caches)
I/O operations (uncached registers/memories accesses)
QEMU normal processor simulation breaks e.g. interrupt handling
Predefined period of simulated time without synchronization

Interrupts
Generated by hardware components as Interrupt pending flags
Flags viewed by QEMU when SystemC resumes the processors
Taken into account at the beginning of the next translation block
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Hardware/Software Simulation "Closed-loop" approach

Code Annotation : Principles

Motivation
Estimate target execution time on the binary translated code

Insert micro-operations to :
Increment the number of cycles according to the datasheets. Need to take into
account registers, data, branch prediction, pipeline data dependencies, ...
Emulate caches (instruction and data), TLB, branch predictors, ...

Annotation example :
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Hardware/Software Simulation "Closed-loop" approach

Code Annotation : Cache Modeling

Simulation speed/accuracy trade-off
No caches
Caches as pure directories

QEMU memory used (backdoor access SystemC access through DMI)
Two different possibilities varying on the time consumption scheme

Cache late : precomputed time consumed at the next synchronization
Cache wait : precomputed time consumed when a miss occurs

Caches full
SystemC memory used
Search data and instructions over the interconnect
Instructions dropped as available from QEMU translation cache
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Hardware/Software Simulation "Closed-loop" approach

Code Annotation : Cache Details

Instruction Cache
Where?

At the beginning of each translation block
At the beginning of each cache block

What?
Synchronize simulated cycles
Request over the interconnect

Data cache
Where?

Before each data access (read and write)
What?

On read miss : synchronize (write-back if wbc), fill cache block using the interconnect
On write hit : update the value in cache
On write : update the value in memory through interconnect if wtc
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Hardware/Software Simulation "Closed-loop" approach

Code Annotation : Cache Example

Assumption : cache blocks are 8 words (32 bytes) long
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Hardware/Software Simulation "Closed-loop" approach

Cache Annotation : Accuracy

Monoprocessor results

SOCLIB No cache (%) Cache late (%) Cache wait (%) Cache full (%)
Instructions 24114066 -0.00 0.00 0.00 0.00
Cycles instr. 31303545 -0.00 0.00 0.00 0.00
Simulated time
(∗103)

50635 -36.70 -0.04 -0.04 -0.04

Sim. speedup 1 553 356 55 28
Sim. slowdown 553 1 1.5 10 20

4 processors results

SOCLIB No cache (%) Cache late (%) Cache wait (%) Cache full (%)
Instructions 25331336 35.13 22.31 5.24 6.28
Cycles instr. 32931244 34.53 22.01 5.44 6.45
Simulated time
(∗103)

19020 -21.07 1.34 -8.44 4.19

Sim. speedup 1 381 246 35 17
Sim. slowdown 381 1 1.5 11 22
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Hardware/Software Simulation "Closed-loop" approach

Annotation : Caveats I

Hiding (lots of) stuff under the carpet
Only L1 is modeled, no L2, TLB, MMU, ...
But that just a matter of effort (and simulation speed)
Cache model uses host virtual addresses *<%o(

gives however no-so surprisingly pretty good results
Very intrusive into the simulator
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Hardware/Software Simulation "Closed-loop" approach

Annotation : Caveats II

But there is worse
Experimentation done with a limited number of cores
Simulation speed does not and cannot scale !

void qemu_invalidate_address (qemu_instance *instance, uint32_t addr, int src_idx)

{

uint32_t dtag = addr >> dcache_line_bits;

int32_t didx, dstart_idx = dtag & (dcache_lines - 1) & ~((1 << dcache_assoc_bits) - 1);

uint32_t itag = addr >> icache_line_bits;

int32_t iidx, istart_idx = itag & (icache_lines - 1) & ~((1 << icache_assoc_bits) - 1);

int32_t i;

for (i = 0; i < instance->m_NOCPUs; i++) {

if (i != src_idx && (didx = dcache_line_present (i, dstart_idx, dtag)) != -1)

instance->m_cpu_dcache_flags[i][didx].valid = 0;

if ((iidx = icache_line_present (i, istart_idx, itag)) != -1)

instance->m_cpu_icache_flags[i][iidx].valid = 0;

}

}
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Hardware/Software Simulation Runtime modifications

Change in runtime : Branch Prediction

Done when exiting translation blocks
No need to annotate at code generation time
But not as easy as it seems :
Large BP tables lead to host cache trashing slowing down simulation

⇒ Need proper high level branch predictor models to be usable
Seznec L-TAGE example from cbp3

Execution times in seconds without/
with abstract/with full L-TAGE predictor

Number of host L2 cache misses during
simulation
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Hardware/Software Simulation "Open-loop" approach

"Open-loop" approach I

Principle for cache simulation
Log memory accesses, cache control instructions and TLB control instructions
Replay the events on a focused memory hierarchy simulator
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Hardware/Software Simulation "Open-loop" approach

"Open-loop" approach II

Possible implementation
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Hardware/Software Simulation "Open-loop" approach

"Open-loop" approach III

Pros and Cons
Pros :

Benefits from the parallel nature of the host
Focused detailed simulator is hopefully faster than full system simulator
e.g. branch prediction, which can even be fully accurate!
Intrusiveness in full system simulator (relatively) low

Cons :
Execution flow not altered by timing
Caches or TLB misses
Occurrence of external events unchanged
Timer and other interrupts would change states
Must evaluate the "divergences"
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Simulation Acceleration

Outline

1. Introduction

2. Virtual prototyping

3. Modeling for ESL Simulation

4. Hardware/Software Simulation

5. Simulation Acceleration

6. Benchmarks
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Simulation Acceleration

Sequential DBT Acceleration
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Simulation Acceleration

Sequential DBT Acceleration

Execution time breakdown of QEMU

(source: X. Tong, T. Koju, and M. Kawahito, IBM Research - Tokyo)

Address translation
Floating point emulation, uses helpers as of today
Detect hot-paths and optimizes them (see IBM Hotspot Java VM)
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Simulation Acceleration

Parallel DBT Acceleration

Use host multicore nature
Implement target AMO/sync instructions as host AMO/sync instructions

Trivial, isn’it?
Not really !

AMO/sync instruction semantics are not identical
test-and-set/fetch-and-incr/fetch-and-add/cas/ll-sc/...

Target/Host memory consistency models differ
x86 and x64 have strong consistency model => nice hosts
Arm has weak consistency model => need sync everywhere as host

In QEMU
MTTCG : Parallel executions of processors using host AMO/sync
Works only for Alpha ( !) and ARM on x86-64 for now
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Simulation Acceleration

Parallel DE Acceleration

PDES : Has been a research topic for long
Needs large chunks of parallel code execution
Synchronization is killing simulation speed
Needs a viable parallel semantic, one that SystemC doesn’t have!
"Seven Obstacles in the Way of Parallel SystemC", Rainer Dömer, UC Irvine
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Benchmarks

Outline
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Benchmarks

A few words on benchmarks I

Benchmark : a set of programs covering all the aspects of program execution "differently"

Program performance should not dramatically improve by trivial optimization
Counterexample : Dhrystone

Program characteristics should be complementary and exercise different behaviors
Static control vs dynamic controls
Arrays vs graphs
Streams vs arrays, ...
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Benchmarks

A few words on benchmarks II

Popular benchmarks

SPEC For general purpose computing architecture research
De facto standard, SPEC-INT and SPEC-FP, several generations
Neither open-source nor free

Polybench Set of static control compute intensive kernels mainly for compilers
Also useful to evaluate processor simulators, free and open-source

Coremark Target embedded MCU
Neither open-source nor free, very industry oriented

MiBench Target embedded systems, free and open-source
Splash2 For parallel processing architecture research

Using the pthread and not much beyond that, free and open-source,
Considered by some a bit old

Parsec For parallel processing architecture research
Rely on many libraries, hard to run without a Linux kernel
Considered more up-to-date, free and open-source
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Benchmarks

A few words on benchmarks III

Another popular benchmark
Linux boot
Free and open-source

Benchmark and usage
Measure metrics for all programs in benchmark
If not, explain why!
If needed, run on top of an OS
Papers report large variations between bare-metal and OS versions
The more, the better
But need clear explanations of results not a bunch of numbers !
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Benchmarks

Time for "name dropping"!

SMARTS : sample based
SNIPER : reduced input based
Gem5 : full system, processors cycle approximate
Memory hierarchy, NoC, hard to say
SoClib :full system, processors cycle approximate
Memory hierarchy and NoC cycle accurate on the interfaces
QEMU : full system, no metrics other than instruction count
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Benchmarks

Quick summary

Simulation is a useful technology
No need to be functional to perform accurate metric estimations
At least for uniprocessor systems!
Functional simulation however very useful for SoC design
Fast processor simulators use DBT, open-source solution available
Accurate estimation of power and timing still on-going research
Although it has been on-going for decades :(
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