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Introduction

Setting the landscape : System-on-Chip Integration Trend

July 10, 2018 06:37 ET | Source: Energias Market Research
NEW YORK, July 10, 2018 (GLOBE NEWSWIRE) -- The global system-on-chip

market was
expected to

reach USD 128.1

valued at USD 33.4 Dbillion in 2017
billion by 2024, at a CAGR of 19.3%

Time frame | Nb of SoCs | Devices Device Maker
2012-2018 22 | Kirin HiSilicon (Huawei)
2007-2018 29 | APLx Apple

2012-2016 33 | Atom Intel

2000-2018 46 | SxC and Exynos | Samsung
2003-2019 120 | MTx Mediatek
2007-2018 136 | Snapdragon Qualcomm

(source: Wikipedia articles of the respective device families)
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Modern SoCs

Characteristics

o Highly programmable
o Include several to many processors
o With plenty of IPs, some legacy, some ad-hoc
o Based on a few processor architectures :
o ARM : more or less in every market
o Power : avionics, automotive, servers
o MIPS : consumer, networking, automotive
o Sparc : space
o RISC-V : hard drives :-)
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A Small Example : STM32Fxx SoC

o ~ 30 IPs
0 ~ 460 registers in IPs
o ??7?fields in registers (count hard to automate)
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Modern SoCs

Characteristics
o Highly programmable
o Include several to many processors

o With plenty of IPs, some legacy, some ad-hoc
o Based on a few processor architectures :

o ARM : more or less in every market
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o Power : avionics, automotive, servers

o MIPS : consumer, networking, automotive

o Sparc: space

o RISC-V : hard drives :-) =-
[pcle
| sATA20
. sATA20

? rowseie
How to make sure that the system works ? ———H

Integration issue, not IP per IP validation
Need to check interactions within the system
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Introduction

SoC vs PCB

System-on-Chip
Single piece of silicon that includes all electronic components (cpus, memories, peripherals, ...)
required to build a system (product)

System-on-Chip / = Printed-Card-Board
o Connections ~~ oo
o Capacitances ~ 0 (although DRAM stays, as of now, external)
o Industrialisation =—> cost ~» 0
o Modification after fabrication impossible !

F. Pétrot (TIMA Lab, Grenoble-INP) HW/SW Simulation 5/54



Design complexi

Technology push
o Number of transistors : +100% every 18 months (Moore’s Law)
- soon enough it will be over!
o Design productivity : +30% per year
= Design Productivity Gap
o Constant need for new design techniques and tools

~ EPpétrot (TIMALab, Grenoble-INP)  HW/SWSimulaton 6754



Introduction
Design complexity increases

Circuit complexity push
o Hardware integration of huge circuits

o Many complex elements : processors, interconnects, ...
o Many CPU sub-systems in current SoC (CPU+DMA+Memory+...)
o Massively parallel integrated computers at hand

o VHDL/Verilog hardly do the job, as by the way to System-Verilog or Chisel
Even connecting things together becomes an issue

o Nothing like "gates to rtl" for system-level implementation yet
HLS solves some issues, but not so many (sorry Philippe!)

F. Pétrot (TIMA Lab, Grenoble-INP) HW/SW Simulation 7/54



What is simulation useful for ?

Simulation goals |

Two main goals

Dimensioning the system

Helps a lot for deciding pArch/Arch parameter values
Bus width, cache size and geometry, number of issues, ...
= Goal is to make educated guesses'!

o Functionality not necessary
= Software doesn’t actually run on it!

o Either sampling and replay samples
o Or traffic generation following probability laws

Purely performance estimation oriented
At the end of the day, a replacement to expert excel sheets

F. Pétrot (TIMA Lab, Grenoble-INP) HW/SW Simulation 8/54



Simulation goals Il

Virtually prototype the system

Check system consistency

HWY/SW relationships, memory maps, device access, ...
Goal is to ensure system bring-up in days!

o Ensures functional correctness of the system
o Runs software on top of hardware models
o Would also like to get figures of merit!
Wants both correct function and accurate estimates

"~ EPpétrot (TIMALab, Grenoble-INP)  HW/SWSimulaton 9/54



Sample based simulation |

Mainly used in CPU p-architectural research
Based on the central limit theorem

And on other statistical approaches : Xz, clustering, etc

Sample-base simulation principle 7\
o Record architectural snapshots // \\\
@ On actual processor, FPGA, Functional ol | /)
simulators /)
o And replay snapshots on detailed p/Arch
simulator, HW emulator, ...
(source: "SMARTS : Accelerating microarchitecture simulation L S T ey s o o e aaan e
via rigorous statistical sampling", Wunderlich et al., ISCA'03) ez

(source: Cdang, Wikipedia)
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Sample based simulation Il

Issues
o Quality of the samples
Profile based characterization

o Branch mis-prediction behavior
o Intrinsic ILP or spatial/temporal locality, data reuse distance

Random time sampling
o Well, random :-)
Periodical sampling

o Allows for speed/accuracy trade-offs
o Periodical behavior or phases should not match sampling period !

o Multi-thread cores and Multicores
Very few approaches devised

"~ EPpétrot (TIMALab, Grenoble-INP)  HW/SWSimulaton /54



Reduced input se

Reduced input set
o Limit the size of the working set : smaller arrays/matrices, files, etc

o Keep statistically similar execution profiles
Not so easy = define the metrics are of interest, and evaluate them all

~ EPpétrot (TIMALab, Grenoble-INP)  HW/SWSimulaton 12/54



Simulation approaches

Reduced input set/Truncated simulation approaches I

Truncated simulation

o RunZ
Simulate accurately the first Z million contiguous instructions

o Fast-forward X + Run Z
Simulate functionally the X first million instructions
and accurately the following Z millions

o Fast-forward X + Warm-up Y + Run Z
Simulate functionally the X first million instructions
and accurately the following Y million without recording statistics,
and then the following Z millions

F. Pétrot (TIMA Lab, Grenoble-INP) HW/SW Simulation 13/54



Simulation approaches

Virtual prototyping

Targets full digital system simulation
Discrete event based

Approaches
Cycle-accurate, bit-accurate (CABA)

Signal based, cycle per cycle = many events, sloooooowwww

F. Pétrot (TIMA Lab, Grenoble-INP) HW/SW Simulation 14/54



Simulation approaches

Virtual prototyping

Targets full digital system simulation
Discrete event based

Approaches
Transaction Level Modeling (TLM)

(source: STMicroelectronics)

Transactions based = few events, fast

F. Pétrot (TIMA Lab, Grenoble-INP) HW/SW Simulation 14/54
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o Quick changes in business trends :
Touch/fold screens, high-density pixels, Al in 'yni’, ...

o Some deadlines shall not be missed :
Christmas, Chinese New Year, Consumer Electronics Show in Las Vegas, ...

"~ EPpétrot (TIMALab, Grenoble-INP) ~ HW/SWSimulaton 16754



Stringent constraint

o Quick changes in business trends :
Touch/fold screens, high-density pixels, Al in 'yni’, ...

o Some deadlines shall not be missed :
Christmas, Chinese New Year, Consumer Electronics Show in Las Vegas, ...

= A product that misses its deadline can bankrupt a company :
"One week late, one year late"!

"~ EPpétrot (TIMALab, Grenoble-INP)  HW/SWSimulaton 16754



Stringent constraints on the d

o Quick changes in business trends :
Touch/fold screens, high-density pixels, Al in 'yni’, ...

o Some deadlines shall not be missed :
Christmas, Chinese New Year, Consumer Electronics Show in Las Vegas, ...

= A product that misses its deadline can bankrupt a company :
"One week late, one year late"!

= "Time to market" demands ad-hoc design methods and large design teams

16/54



How mu

Software bug
o Firmware/Embedded software update

@ Sometime easy to realize
Your smartphone, your box, your Alexia

@ Sometimes not :
Your car, your credit-card, a plane, an orbiter

"~ EPpétrot (TIMALab, Grenoble-INP)  HW/SWSimulaton /54



How much does an error cost ?

Software bug

@ Firmware/Embedded software update

@ Sometime easy to realize
Your smartphone, your box, your Alexia

@ Sometimes not :
Your car, your credit-card, a plane, an orbiter

Hardware bug
@ Respin at foundry
O Costissues :

Feature size 0.25 um 013 um 65 nm
1layer mask cost | $10 000 | $30000 | $75 000
Layers 12 25 40
Total cost $120 000 | $750 000 $3M

source EETimes

~ EPétrot (TIMALab, Grenoble-INP) ~ HW/SWSimulaton /54




How much does an error co
:

Hardware bug
Mask Set Cost of Mature Technonogies
1600000
1400000
1200000
1000000
BOD0DOD
600000
400000
200000
, m [ |
180nm 130nm B65nm 40nm 28nm
source: friends of AnySilicon EHYSi”COH

"~ EPpétrot (TIMALab, Grenoble-INP)  HW/SWSimulaton /54



How much does an error cost ?

Hardware bug

o Already fabricated circuit : search for a workaround
o Software trick, slower but viable
o Engineering change order (ECO) for mask modification
Metal patches, spare cells, ...

o SoC FPGA
o ARM Excalibur : ARM 922 (200 MHz) + FPGA APEX 20KE
o Xilinx Virtex 4 : PowerPC 405 (450 MHz) + FPGA + Ethernet MAC
o But
- FPGA cost >> 10x ASIC fabrication cost for high-volume
- FPGA power consumption >> 10x ASIC power consumption

"~ EPpétrot (TIMALab, Grenoble-INP)  HW/SWSimulaton 18/54



How much does an error cost

Design Cost

Estimated Chip Design Cost, by Process Node, Worldwide, 2011

| ] Design cost ($M)
[ Mask cost ($M)
28/22-nm ‘ . [l Embedded software (SM)

. Yield ramp-up cost ($M)

§>$17aM

0 45 20 135 180

© Copyright 2013 Xiinx £ XILINX » ALL PROGRAMMABLE.
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Virtual prototyping

Challenges

When using a SoC

o Debugging software on the hardware is a pain!
o Boot time configuration : IP reset order, IP clock settings, system setup, ...
o IP usage, register write-order or timing, drivers, ...
o Software races, ...

o Developers accesses to the board is “sequential”

o And often require a complex setup

When designing a SoC

o Design space exploration

o No actual hardware, unreliable hardware, complex setup
o Co-design issues :

o Hardware/Software partitioning
o Which IP kind, which actual IP
o Evaluation of performance metrics

o Early software development (see above)

F. Pétrot (TIMA Lab, Grenoble-INP) HW/SW Simulation
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Simulation to our rescue

A technology that spans all aspects of the design and validation of electronic systems

Within this presentation

o Simulation of digital hardware/software systems that

o connect several IPs
o contain several processors
o that are actually running code

o Higher level than RTL
o With a focus on fast (and functional) simulation of software on top of hardware

"~ EPpétrot (TIMALab, Grenoble-INP)  HW/SWSimulaton 21/54



Target : Design issues

o Simulation speed

Whole SoC simulation at RTL : several days, if not weeks, ...
Encoding and decoding a single 1280x720 MPEG 4 image
1 h using RTL simulation (courtesy of STMicroelectronics)
No way to test a reasonable OS or even embedded software at this pace
Not enough time to validate software and hardware/software integration
Partition design in blocks and reuse existing ones
Some workarounds
o Cosimulation
o Hardware emulation
o Hardware in-the-loop for legacy IPs

© ©

© 06 0 o

"~ EPpétrot (TIMALab, Grenoble-INP)  HW/SWSimulaton 22/54



Abstraction |

RTL
Modeling
RTL + cosimulation 3 minutes . .

Time Gain

TLM 3se - X 1200 RTL 1

CABA | 3
I?nn;gﬁgﬁ; 19 Temps de simulation TLM 10

(échelle logarithmique)

1 10 1000 10000
MPEG 4 image encoding and decoding

(source: STMicroelectronics (hence the legend in French))
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Estimating Non-functional me

Accurate estimation challenging

o Timing (latency,

speed ve. A throughputs, delays)
peedvs. Accd Energy/Power

o Temperature
« Truth ...is much too complicated to allow anything
but approximations », John Von Neumann, 1947
« All models are wrong ; some models are useful »,
George E. P. Box, 2005

e TR pwawswuin Y



o Functional
o Separated IP design, reuse of existing IPs
o Hard to ensure that integration works out of the box
o Not only electrical problems



o Functional

o Separated IP design, reuse of existing IPs
o Hard to ensure that integration works out of the box
o Not only electrical problems

o Performances

o Capability of a set of IPs to realize a task in a given time
o Complex non-functional dependencies

"~ EPpétrot (TIMALab, Grenoble-INP)  HW/SWSimulaton 25/54



Target : Validati

o Is the system compliant to its specifications ?
o Specs are more and more complex

o Audio and video standards : MPEG x, H264, HEVC ...
o Weird use cases
o Spec interpretation issues

o Data volume is increasing : HD, FHD, 4k, 8Kk, ...
o How do you specify the specifications ?

"~ EPpétrot (TIMALab, Grenoble-INP)  HW/SWSimulaton 26754
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Hardware/Software Simulation

Clarification

Simulation : software model of a hw/sw system
Emulation : hardware part of a hw/sw system executed on a specific FPGA platforms
Host : machine on which the simulation runs
Target : machine which is simulated

Hypothesis
o Event-driven simulation
o High abstraction level to ensure speed of simulation
o Software is a first class citizen

o Binary executed on a model of the processor(s)

"~ EPpétrot (TIMALab, Grenoble-INP)  HW/SWSimulaton 28754



Hardware/Software Simulation

Clarification

Simulation : software model of a hw/sw system

Host : machine on which the simulation runs
Target : machine which is simulated

Hypothesis
o Event-driven simulation

o High abstraction level to ensure speed of simulation
o Software is a first class citizen

o Binary executed on a model of the processor(s)
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Software simulation technologies

int f(int a, int b) {

c=a+b;

-

ad
Target ASM

31 2827262524 212019 1615 1211
IPs cond [00[7jp100s| Rn' | Rd operan
Interpretive
Pre-decode

Native

Instruction accurate Dinamic Binary Translation

if (!(instr = insncache(pc))) {
insn = fetch(pc);
op = decode(insn);
switch (op.code) {

if (!(instr = insncache(pc))) {
while (op != branch) {
insn = fetch(pc);
op = decode(insn);

Fetch
and insn = fetch(pc);

op = decode(insn); case BL: ...; break; switch (op.code) {
DeCOde switch (op.code) { case ADD: case BL: ...; break;

case BL: ...; break; instr.f = execute_add; case ADD:

case ADD: instr.args = fillargs(op); append(block

Execute break; gen_add(op));

break;
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Dynamic Binary Translation Principle

Instruction Interpretation Process

e )
'
'

Binary Translation
No

: { Fetch } (D }

micro-ops &
buffer F——=fTiny code

Instruction iTB Cache Entry

‘Code Generation, Translation Cache
(host binary code)

Target binary
code (.elf)
Micro-operations
built-in

"~ EPpétrot (TIMALab, Grenoble-INP)  HW/SWSimulaton 30/54



Hardware/Software Simulation

Dynamic Binary Translation Principle

Instruction Interpretation Process

e
'
'

No

Binary Translation

Fetch

Instruction iTB Cache Entry

Translation Cache
(host binary code)

Target binary
code (.elf)

Micro-operations
built-in

Code Generation Example

18 target_insn_x

F. Pétrot (TIMA Lab, Grenoble-INP) HW/SW Simulation
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Hardware/Software Simulation

Dynamic Binary Translation Principle

Instruction Interpretation Process

Binary Translation

o
'
'

No
Fetch Decode Branch?

Instruction iTB Cache Entry

Translation Cache
Target binary (host binary code)
code (.elf)

Micro-operations
built-in

Code Generation Example

18 target_insn_x uop_a
uop_b
uop_c

F. Pétrot (TIMA Lab, Grenoble-INP) HW/SW Simulation
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Hardware/Software Simulation

Dynamic Binary Translation Principle

Instruction Interpretation Process

S
'
'

Binary Translation

Fetch

Instruction

Target binary
code (.elf)

Micro-operations
built-in

No ).
@ : Execute

Yes

generatorJ:.>TB Cache Entry|

CCode Generation, Translation Cache
(host binary code)

Code Generation Example

18 target_insn_x uop_a
uop_b
uop_c

F. Pétrot (TIMA Lab, Grenoble-INP)

HW/SW Simulation
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Hardware/Software Simulation

Dynamic Binary Translation Principle

Instruction Interpretation Process

Binary Translation

o
'
'

No

Fetch

iTB Cache Entry

Instruction

Translation Cache
(host binary code)

Target binary
code (.elf)

Micro-operations
built-in

Code Generation Example

18 target_insn_x uop_a 1c target_branch
uop_b
uop_c

F. Pétrot (TIMA Lab, Grenoble-INP) HW/SW Simulation
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Hardware/Software Simulation

Dynamic Binary Translation Principle

Instruction Interpretation Process

Binary Translation

o
'
'

No
Fetch Decode Branch?

Instruction iTB Cache Entry

Translation Cache
Target binary (host binary code)
code (.elf)

Micro-operations
built-in

Code Generation Example

18 target_insn_x uop_a 1c target_branch uop_d
uop_b uop_e
uop_c

F. Pétrot (TIMA Lab, Grenoble-INP) HW/SW Simulation
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Hardware/Software Simulation

Dynamic Binary Translation Principle

Instruction Interpretation Process

Pococoococoo
'
'

Binary Translation

Fetch

Instruction

Target binary
code (.elf)

No ).
Decode @ X

Yes

Execute

generatorJ:.>TB Cache Entry|

Micro-operations
built-in

Translation Cache
(host binary code)

Code Generation Example

18 target_insn_x uop_a 1c target_branch uop_d

uop_b
uop_c

uop_e

F. Pétrot (TIMA Lab, Grenoble-INP)

HW/SW Simulation
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Hardware/Software Simulation

Dynamic Binary Translation Principle

Instruction Interpretation Process

e
'
'

Binary Translation

No
: Fetch ecode Branch?

Instruction

Target binary
code (.elf)

Micro-operations

built-in

Execute

—>TB Cache Entry

Translation Cache

(host binary code)

Code Generation Example

18 target_insn_x uop_a 1c target_branch uop_d
uop_b
uop_c

uop_e

host_insn_a.1
host_insn_a.2
host_insn_b.1
host_insn_b.2
host_insn_b.3

host_insn_c.1
host_insn_c.2
host_insn_c.3
host_insn_c.4
host_insn_d.1

host_insn_d.2
host_insn_e.1
host_insn_e.2
host_insn_e.3

F. Pétrot (TIMA Lab, Grenoble-INP)

HW/SW Simulation
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Hardware/Software Simulation

QEMU-SystemC Integration Example

SystemC wrapper : QEMU platform

@ Shares QEMU "runtime" and translation
cache

@ Contains a SystemC wrapper for each
processor (including its MMU)

@ Connected to interconnect to
communicate with SystemC hardware
components

SystemC wrapper : processors

@ Simulates independently under SystemC
control

@ Accesses SystemC components by
mapping ranges of physical addresses as
1/0O (except main memory)

4

F. Pétrot (TIMA Lab, Grenoble-INP)

HW/SW Simulation

Platform SystemC wrapper

]
ISS SystemC||ISS SystemC| [ISS SystemC

wrapper 1 wrapper 2 | | wrapper M
controller | Q-IsS | | Q-IsS | | Q-1ss |
T T T
i iy
RQ |- Interconnect ]
Shared Ogher
Memory periphe-

rals

TLM components
O Either in SystemC or in QOM, your call!

@ Benefits from QEMU existing models
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Hardware/Software Simulation

DBT/Discrete Event Integration

Consequences
o Zero time translation-block interpretation

o Execution directly on the host, with TB chaining
No way for a simulation kernel to step in

= Synchronization with IPs to be defined

Two approaches

o "Closed-loop" timing-aware simulation :
Timing computed during simulation influences future behaviors
o "Open-loop" strategy :
Generate memory access traces and computes behavior off-line :
No influence on future behaviors
Often used in general purpose computer-architecture research

F. Pétrot (TIMA Lab, Grenoble-INP) HW/SW Simulation

32/54



Hardware/Software Simulation "Closed-loop" approach

DBT/DE Synchronization

Synchonization points

(%)

Cache misses (instruction and data caches)

o 1/0 operations (uncached registers/memories accesses)

o QEMU normal processor simulation breaks e.g. interrupt handling
o Predefined period of simulated time without synchronization

Interrupts
o Generated by hardware components as Interrupt pending flags
o Flags viewed by QEMU when SystemC resumes the processors

o Taken into account at the beginning of the next translation block

F. Pétrot (TIMA Lab, Grenoble-INP) HW/SW Simulation 33/54



Hardware/Software Simulation "Closed-loop" approach

Code Annotation : Principles

Motivation
Estimate target execution time on the binary translated code

Insert micro-operations to :
o Increment the number of cycles according to the datasheets. Need to take into
account registers, data, branch prediction, pipeline data dependencies, ...

o Emulate caches (instruction and data), TLB, branch predictors, ...

Annotation example :

aclirgliterss Target code trgr:igliarliaén S—;:glt:ttiiﬂ Annotated generated code
addr_instrl target_instrX micro-op1l_instrX micro-opl_instrX host_instrl_micro-op1_instrX
host_instr2_micro-op1_instrX
host_instr3_micro-op1_instrX
micro-op2_instrX micro-op_annotation host_instrl_micro-op_annotation
host_instr2_micro-op_annotation
micro-op2_instrX host_instrl_micro-op2_instrX

F. Pétrot (TIMA Lab, Grenoble-INP) HW/SW Simulation

34/54



Hardware/Software Simulation "Closed-loop" approach

Code Annotation : Cache Modeling

Simulation speed/accuracy trade-off
o No caches

o Caches as pure directories
o QEMU memory used (backdoor access SystemC access through DMI)
o Two different possibilities varying on the time consumption scheme
o Cache late : precomputed time consumed at the next synchronization
o Cache wait : precomputed time consumed when a miss occurs
o Caches full
o SystemC memory used
o Search data and instructions over the interconnect
o Instructions dropped as available from QEMU translation cache

F. Pétrot (TIMA Lab, Grenoble-INP) HW/SW Simulation 35/54



"Closed-loop" approach
Code Annotation : Cache Details

Instruction Cache
o Where?
o At the beginning of each translation block
o At the beginning of each cache block
o What?
o Synchronize simulated cycles
o Request over the interconnect

Data cache
o Where?
o Before each data access (read and write)
o What?

o On read miss : synchronize (write-back if whc), fill cache block using the interconnect
o On write hit : update the value in cache
o On write : update the value in memory through interconnect if wtc

"~ EPpétrot (TIMALab, Grenoble-INP)  HW/SWSimulaton 36754




Hardware/Software Simulation

Code Annotation : Cache Example

"Closed-loop" approach

Assumption : cache blocks are 8 words (32 bytes) long

Instr Original Annotated
Target code
address 9 generated code generated code
start_tb: 18 instrl_reg_operation host_instrl_for_instrl insn_cache_verify (18);

1C  instr2_load_from_1000

20 instr3_store_5 to 2000

F. Pétrot (TIMA Lab, Grenoble-INP)

host_instrN1_for_instrl

host_instrl_for_instr2

host_instrN2_for_instr2

host_instrl_for_instr3

host_instrN3_for_instr3

HW/SW Simulation

nb_cycles += cpu_datasheet [instrl];
host_instrl_for_instrl
Héét_inster_for_instrl

nb_cycles += cpu_datasheet [instr2];
data_cache_verify (1000);
host_instrl_for_instr2
Héét_instrNZ_for_instr2
insn_cache_verify (20);

nb_cycles += cpu_datasheet [instr3];
write_access (2000, 5);
host_instrl_for_instr3

host_instrN3_for_instr3

37/54



Cache Annotation : Accuracy

"Closed-loop" approach

Monoprocessor results

[ socLB || Nocache (%) | Cache late (%) | Cache wait (%) | Cache full (%)

Instructions 24114066 -0.00 0.00 0.00 0.00
Cycles instr. 31303545 -0.00 0.00 0.00 0.00
Simulated time 50635 -36.70 -0.04 -0.04 -0.04
(+103)

Sim. speedup 1 558 356 55] 28
Sim. slowdown 553 1 1.5 10 20

4 processors results
[ [[ socLB || Nocache (%) | Cache late (%) | Cache wait (%) | Cache full (%) |

Instructions 25331336 35.13 22.31 5.24 6.28
Cycles instr. 32931244 34.53 22.01 5.44 6.45
Simulated time 19020 -21.07 1.34 -8.44 419
(+103)

Sim. speedup 1 381 246 35 17
Sim. slowdown 381 1 1.5 1 22
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Annotation : Caveats |

Hardware/Software Simulation "Closed-loop" approach

Hiding (lots of) stuff under the carpet
o Only L1is modeled, no L2, TLB, MMU, ...
But that just a matter of effort (and simulation speed)
o Cache model uses host virtual addresses *<7,0(

Code
Cache

Guest
Physical
Frames

Host Virtual Memory

Helper(Rx,@)

Software MMU
Virtual TLB: Hash Table

Iy Colia GVPN:
hash()—>t+ GVPN HVPN Guest Virtual Page Number
GVPN GPFN:
(@31.12) Guest Physical Frame Number
HVPN:
offset Host Virtual Page Number
(@11.0)

[ OxI3
037

if (HT[index].key != GVPN) {
GPFN = sw_page_walk(cpu->ttb, GVPN);
HVPN = gphys_to_hvirt(GPFN);
HT[index].entry = HVPN;

}

i
i
I
i
i
I
i
i
I
i
i
I
!
i
index = hash(GVPN);
i
I
i
i
I
i
i
|
i
return x(HT[index].entry + offset); I
]

gives however no-so surprisingly pretty good results
o Very intrusive into the simulator
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Hardware/Software Simulation "Closed-loop" approach

Annotation : Caveats Il

But there is worse

Experimentation done with a limited number of cores
Simulation speed does not and cannot scale!

void gemu_invalidate_address (gemu_instance *instance, uint32_t addr, int src_idx)

{
uint32_t dtag = addr >> dcache_line_bits;
int32_t didx, dstart_idx = dtag & (dcache_lines - 1) & ~((1 << dcache_assoc_bits) - 1);
uint32_t itag = addr >> icache_line_bits;
int32_t iidx, istart_idx = itag & (icache_lines - 1) & ~((1 << icache_assoc_bits) - 1);
int32_t i;

for (i = 0; i < instance->m_NOCPUs; i++) {

if (i != src_idx && (didx = dcache_line_present (i, dstart_idx, dtag)) != -1)
instance->m_cpu_dcache_flags[i] [didx].valid = O;
if ((iidx = icache_line_present (i, istart_idx, itag)) != -1)

instance->m_cpu_icache_flags[i] [iidx].valid = O;
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Hardware/Software Simulation Runtime modifications

Change in runtime : Branch Prediction

Done when exiting translation blocks
o No need to annotate at code generation time
o But not as easy as it seems :
Large BP tables lead to host cache trashing slowing down simulation

= Need proper high level branch predictor models to be usable
Seznec L-TAGE example from cbp3

RABBITS mmm
Simplified_model mmmm
Complete_mode! s

RABBITS s
Simplified_model mmmm
Complete_model mmmm

H

Execution time in sec (log2 scale)
. 2

Linux-Boot MotionJpeg Modulo2 Linux-Boot MotionJpeg Modulo2

Execution times in seconds without/ Number of host L2 cache misses during
with abstract/with full L-TAGE predictor simulation
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"Open-loop" approach
"Open-|

Principle for cache simulation
o Log memory accesses, cache control instructions and TLB control instructions
o Replay the events on a focused memory hierarchy simulator
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Hardware/Software Simulation

"Open-loop" approach Il

"Open-loop" approach

Possible implementation

Platform SystemC wrapper

]
ISS SystemC||ISS SystemC| |ISS SystemC = 5
Interrupt || wrapper 1 wrapper 2 wrapper M
controller I Q-ISS | I Q-1ss | I Q-Iss |
= = MArch
L i T = simulator
IRQ Interconnect ]
Shared Otlher \—/
Memory periphe-
rals
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Hardware/Software Simulation "Open-loop" approach

"Open-loop" approach IlI

Pros and Cons
Pros :
o Benefits from the parallel nature of the host

o Focused detailed simulator is hopefully faster than full system simulator
e.g. branch prediction, which can even be fully accurate!

o Intrusiveness in full system simulator (relatively) low
Cons:

o Execution flow not altered by timing
Caches or TLB misses

o Occurrence of external events unchanged
Timer and other interrupts would change states

o Must evaluate the "divergences"

F. Pétrot (TIMA Lab, Grenoble-INP) HW/SW Simulation

44/54



1. Introduction

N

. Virtual prototyping

w

. Modeling for ESL Simulation

4. Hardware/Software Simulation

5. Simulation Acceleration

6. Benchmarks



Simulation Acceleration

Sequential DBT Acceleration

QEMU Binary Translation

Guest code

ldr r3, [r7, #4]

erated Host Code Slow Path Trampoline Code

: movl Oxlc(%rl4), %ebp
addl $4, %ebp

: movl %ebp, %edi
leal 3(%rbp), %esi
shrl $5, %edi
andl $OxXfffffc00, %esi

0 : mov rl4,srdi
1

2

3

4

5

6: andl $0x1fe0, %edi
7

8

9

0

1

2

Prepare architectural state

Get target virtual address O
& and operation index

mov oi,edx
lea -0x7f(%rip),%rcx #line 11

} Prepare function return address
$0x55£c967adecO, $r10 }

callg *%rl0 Call softmmu handler

: mov %eax, $ebp
jmpg 0x7fad8fcd8202 #line 11

Retrieve handler return value
and return to generated code

0
1:
2:
3: mov
4:
5
6

leaq 0x2cf0(%rl4, %rdi), S%rdi
cmpl (%rdi), %esi
: movl %ebp, %esi
jne 0x7£2234b234d4
addg 0x10(%$rdi), S%$rsi
: movl (%rsi), S%ebp

Compare tag and call slow path or continue

fetch data at host virtual address

Compute virtual TLB index and tag |
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Simulation Acceleration

Sequential DBT Acceleration

Execution time breakdown of QEMU

#tibrefill &3 code cache others

@ tlb lookup

Multi-Program (MP)

Single-Program (SP)

SRR TN NN sowwy 95+pud
AR AT T T T T UNNNNNNNGE pwezysndcor
R R R T T TN 1oy 957408 507
A e NN NG puidozy

T e sl NN pwiszrazdzgTor
R R e e g e g W WS 10090

R R IR NN\ nuauerex ey
NN NN eseesy

ROATATG D DR DR DA LR TR T N L = g
e e e WONNNERRE wmuenbqizoy
e s ar g a e e o W NS sualsgsy
ROSTSYS S TR T TR EN NG w95
R Rttt N N N W08 Sy
PR ARONNNNONNNNNNE pwezy
OGRS 23 cor
et e e e N ONNONNONNNEEES cdiatoy

(source: X. Tong, T. Koju, and M. Kawahito, IBM Research - Tokyo)

SRR REEEN NN\ sope

umopsjea.lg awil] 38e3uanudd

Address translation

Floating point emulation, uses helpers as of today

Detect hot-paths and optimizes them (see IBM Hotspot Java VM)
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Simulation Acceleration

Parallel DBT Acceleration

Use host multicore nature
Implement target AMO/sync instructions as host AMO/sync instructions
o Trivial, isn’it?
o Not really!
o AMO/sync instruction semantics are not identical

test-and-set/fetch-and-incr/fetch-and-add/cas/11-sc/...

o Target/Host memory consistency models differ
x86 and x64 have strong consistency model => nice hosts
Arm has weak consistency model => need sync everywhere as host

In QEMU

MTTCG : Parallel executions of processors using host AMO/sync
Works only for Alpha (!) and ARM on x86-64 for now

F. Pétrot (TIMA Lab, Grenoble-INP) HW/SW Simulation

47 /54



Parallel DE Acceleration

PDES : Has been a research topic for long

o Needs large chunks of parallel code execution
Synchronization is killing simulation speed

o Needs a viable parallel semantic, one that SystemC doesn’t have!
"Seven Obstacles in the Way of Parallel SystemC", Rainer Démer, UC Irvine
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A few words on b

Benchmark : a set of programs covering all the aspects of program execution "differently"

@ Program performance should not dramatically improve by trivial optimization
Counterexample : Dhrystone

@ Program characteristics should be complementary and exercise different behaviors
Static control vs dynamic controls
Arrays vs graphs
Streams vs arrays, ...
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Benchmarks

A few words on benchmarks Il

Popular benchmarks

SPEC

Polybench
Coremark
MiBench

Splash2

Parsec

For general purpose computing architecture research

De facto standard, SPEC-INT and SPEC-FP, several generations
Neither open-source nor free

Set of static control compute intensive kernels mainly for compilers
Also useful to evaluate processor simulators, free and open-source

Target embedded MCU

Neither open-source nor free, very industry oriented
Target embedded systems, free and open-source
For parallel processing architecture research

Using the pthread and not much beyond that, free and open-source,
Considered by some a bit old

For parallel processing architecture research

Rely on many libraries, hard to run without a Linux kernel

Considered more up-to-date, free and open-source
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A few words on benchmarks Il

Another popular benchmark

Linux boot
Free and open-source

Benchmark and usage

o Measure metrics for all programs in benchmark

If not, explain why'!
o If needed, run on top of an OS

Papers report large variations between bare-metal and OS versions
o The more, the better

But need clear explanations of results not a bunch of numbers!
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Time for "name dro

o SMARTS : sample based
o SNIPER : reduced input based

o Gemb5 : full system, processors cycle approximate
Memory hierarchy, NoC, hard to say

o SoClib :full system, processors cycle approximate
Memory hierarchy and NoC cycle accurate on the interfaces

o QEMU : full system, no metrics other than instruction count
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Simulation is a useful technology
o No need to be functional to perform accurate metric estimations
At least for uniprocessor systems!

o Functional simulation however very useful for SoC design
Fast processor simulators use DBT, open-source solution available

o Accurate estimation of power and timing still on-going research
Although it has been on-going for decades : (
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