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Introduction
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Applications with Security Requirements

• medical devices, e-health

• { home | building | factory } automation

• e-commerce

• transports

• communications: cell. phones, Internet, industrial networks, . . .

• IOT, WSN, RFID. . .

• embedded systems

• { cloud | fog | edge | . . . } computing

• smart { grids | cars | cities | buildings | . . . }
• defense

• digital administration

• etc.
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Security and Embedded Systems

Integrated circuits perform security tasks, somewhere in the system. . .

Examples where a close access is difficult:

Examples where a close access can be possible:
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Crytographic Background
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Cryptographic Features

Objectives:

• Confidentiality

• Integrity

• Authenticity

• Non-repudiation

• . . .

Cryptographic primitives:

• Encryption

• Digital signature

• Hash function

• Random numbers generation

• . . .

Implementation issues:

• Performances: speed, delay, throughput, latency

• Cost: device (memory, size, weight), low power/energy consumption,
design

• Security: protection against attacks
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Basic Cyphering

Alice wants to secretly send a message to Bob in such a way Eve
(eavesdropper/spy) does not get any information

secret

A B

secured zone secured zone
communication

channel

M
plain text

E
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Symmetric / Private-Key Cryptography

A BM

E D

k

Ek(M)

k

Dk(Ek(M)) =M

E

• A : Alice, B : Bob

• M: plain text/message

• E : encryption/ciphering algorithm, D: decryption/deciphering
algorithm

• k : secret key to be shared by A and B

• Ek(M): encrypted text

• Dk(Ek(M)): decrypted text

• E : eavesdropper/spy
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Asymmetric / Public-Key Cryptography

A BM

E D

k

Ek(M)

k

k ′

Dk ′(Ek(M)) =M

E

• k : B’s public key (known to everyone including E)

• Ek(M): ciphered text

• k ′: B’s private key (must be kept secret)

• Dk ′(Ek(M)): deciphered text
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Symmetric or Asymmetric Cryptography?

Private-key or symmetric cryptography:

simple algorithms

fast computation
limited cost (silicon area, energy)

requires a key exchange

key distribution problem for n persons

Public-key or asymmetric cryptography:

no key exchange required

only 2 keys per person (1 private, 1 public)

allows digital signature

more complex algorithms

slower computation
higher cost
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Advanced Encryption Standard (AES)

Established by NIST
in 2001

Symmetric encryption

Block size: 128 bits

key length #round

128 10
192 12
256 14

Based on substitution-
permutation
network

Image source: http://fr.wikipedia.org/

NIST: National Institute of Standards and Technology
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AES Round Operations

Images source: http://fr.wikipedia.org/
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RSA Asymmetric Cryptosystem (1/2)

Published in 1978 by Ron Rivest, Adi Shamir and Leonard Adleman [12]

Key generation (Alice side)

• Choose two large prime integers p and q

• Compute the modulus n = pq

• Compute ϕ(n) = (p − 1)(q − 1)

• Choose an integer e such that 1 < e < ϕ(n) and gcd(e, ϕ(n)) = 1

• Compute d = e−1 mod ϕ(n)

• Private key (kept secret by Alice): d and also p, q, ϕ(n)

• Public key (published): (n, e)
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RSA Asymmetric Cryptosystem (2/2)

Private key (Alice): d Public key (all): (n, e)

Encryption (Bob side):

• convert the message M to an integer m (1 < m < n and gcd(m, n) = 1)

• compute the cipher text c = me mod n

Decryption (Alice side):

• compute m = cd mod n

• convert the integer m to the message M

Theoretical security: integer factorization, i.e. computing (p, q) knowing
n, is not possible when n is large enough
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Modular Exponentiation

Computation of operations such as : ab mod n

ab = a× a× a× a× . . .× a× a× a︸ ︷︷ ︸
a appears b times

Order of magnitude of exponents: 2size of exponent  21024 . . . 22048 . . . 24096

Fast exponentiation principle:

ab = (a2)
b
2 when b is even

= a× (a2)
b−1

2 when b is odd

Least significant bit of the exponent: bit = 0 even and bit = 1 odd
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Square and Multiply Algorithm

input : a , b , n where b = (bt−1bt−2 . . . b1b0)2

output : ab mod n

r = 1
f o r i from 0 to t − 1 do

i f bi = 1 then
r = r · a mod n

e n d i f
a = a2 mod n

endfor
return r

This is the right to left version (there exists a left to right one)
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Side Channel Attacks
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Main Types of Attacks

social engineering

theoretical

software

physical

invasiveprobing

reverse engineering

perturbationfault injection

observation

timing analysis

power analysis

EMR analysis

EMR = Electromagnetic radiation
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Side Channel Attacks (SCAs) (1/2)

Attack: attempt to find, without any knowledge about the secret:

• the message (or parts of the message)

• informations on the message

• the secret (or parts of the secret)

“Old style” side channel attacks:

+

clic

clac

good value

bad value
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Side Channel Attacks (SCAs) (2/2)

A B

E D

M

k

Ek(M)

k

Dk(Ek(M)) =M

E

measure

k , M???
attack

General principle: measure external parameter(s) on a running device in
order to deduce internal (secret) informations
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What Should be Measured?

Answer: everything that can “enter” and/or “get out” in/from the device

• time

• power consumption

• electromagnetic radiation

• temperature

• sound

• number of cache misses

• number and type of error messages

• ...

The measured parameters may provide informations on:

• global behavior (temperature, power, sound...)

• local behavior (EMR, # cache misses...)
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Power Consumption Analysis

General principle:

1. measure the current i(t) in the cryptosystem

2. use those measurements to “deduce” secret informations

VDD

i(t)

crypto.

R

traces

secret key = 962571. . .
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“Read” the Traces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

• algorithm decomposition into steps

• detect loops
I constant time for the loop iterations
I non-constant time for the loop iterations

Source: [6] Kocher, Jaffe and Jun. Differential Power Analysis, Crypto99
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Differences & External Signature
An algorithm has a current signature and a time signature:

r = c0

for i from 1 to n do

if ai = 0 then

r = r+c1

else

r = r×c2

I+ I×
t

I

i
ai

1

0

2

1

3

1

4

0

5

1

6

0

7

0

8

1

T+T×
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Simple Power Analysis (SPA)

Source: [6]
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SPA in Practice

General principle:

algorithm

difference in the behavior

difference in the trace

analysis

Methods: interpretation of the differences in

• control signals

• computation time

• operand values

• ...
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Limits of the SPA

Example of behavior difference: (activity into a register)

t

t + 1

0000000000000000 0000000000000000

1111111111111111 0000000000000001

Important: a small difference may be evaluated has a noise during the
measurement traces cannot be distinguished

Question: what can be done when differences are too small?

Answer: use statistics over several traces
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Differential Power Analysis (DPA)

cryptosystem

internal state

select bit b to attack

b = 1

b = 0

implementation

power model

power(Hb=1)

power(Hb=0)

measures

comparison

correct hypothesis
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Differential Power Analysis (DPA) Example

average

correct

incorrect

incorrect
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Template Attack

cryptosystem

internal state

select variable v to attack

v = 0

v = 1

v = 2

implementation

measures

power(v = 0)

power(v = 1)

power(v = 2)

training step

measures

comparison

correct hypothesis
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Electromagnetic Radiation Analysis (1/2)

General principle: use a probe to measure the EMR

circuit

VDD

GND

EMR measurement:

• global EMR with a large probe

• local EMR with a micro-probe
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Electromagnetic Radiation Analysis (2/2)

EMR analysis methods:

• simple electromagnetic analysis: SEMA

• differential electromagnetic analysis: DEMA

Local EMR analysis may be used
to determine internal architecture
details, and then select weak parts of
the circuit for the attack

X-Y table
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Side Channel Attack on Elliptic Curve Crypto

encryption

signature

etc

p
ro

to
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l
le

ve
l

[k]P

ADD(P,Q) DBL(P)
cu

rv
e

le
ve

l

x±y x×y . . .

fi
el

d
le

ve
l

DBL DBL DBL DBL DBL DBLADD ADD

0 0 0 1 1 0

Scalar multiplication operation
for i from 0 to t − 1 do

if ki = 1 then Q = ADD(P,Q)
P = DBL(P)

• simple power analysis (& variants)

• differential power analysis (& variants)

• horizontal/vertical/templates/. . . attacks
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Activity in a Processor
Operation to be executed: r ← x + a[i]

ti
m

e
signals

x a[i]

r

+

ADD R3,R1,@R2

AS

processor internal status (PIS)

processor internal status (PIS)

processor internal status (PIS)

• AS: ALU status

• PIS: pipeline management, bypasses, memory hierarchy, branch predictor,
monitoring, etc)
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Protections
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Protections, Countermeasures

Principles for preventing attacks:

• embed additional protection blocks

• modify the original circuit into a secured version

• application levels: circuit, architecture, algorithm, protocol. . .

Countermeasures:

• electrical shielding

• detectors, estimators, decoupling

• use uniform computation durations and power consumption

• use detection/correction codes (for fault injection attacks)

• provide a random behavior (algorithms, representation, operations. . . )

• add noise (e.g. masking, useless instructions/computations)

• circuit reconfiguration (algorithms, block location, representation of
values. . . )

Arnaud Tisserand. CNRS – Lab-STICC. Introduction to Side Channel Attacks, ARCHI’19 39/57

Low-Level Coding and Circuit Activity
Assumptions:
• b is a bit (i.e. b ∈ {0, 1}, logical or mathematical value)
• electrical states for a wire : VDD (logical 1) or GND (logical 0)

Low-level codings of a bit:

b = 0 b = 1

standard GND VDD

dual rail
r0 =VDD
r1 =GND

(1, 0)DR
r0 =GND
r1 =VDD

(0, 1)DR

cycles

b

r0

r1
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Circuit Logic Styles
Countermeasure principles: uniformize circuit activity and exclusive
coding

Solution based on precharge logic and dual-rail coding:

cycles

pc

r0

r1

evaluation

b = 0

precharge

invalid

evaluation

b = 0

precharge

invalid

evaluation

b = 1

precharge

invalid

Solution based on validity line and dual-rail coding:

r1
r0

valid

Important overhead: silicon area and local storage (registers)
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Countermeasure: Architecture

Increase internal parallelism:

• replace one fast but big operator

• by several instances of a small but slow one

ar
ch

i.
A

op

ar
ch

i.
B

op1

op2

op3

op4

time

op op op op op op op op

op

op

op

op

op

op

op

op
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Protected Multipliers
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References:
PhD D. Pamula [8]
Articles: [11], [10], [9]
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Protected (Old) Accelerator
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Warning: old dedicated accelerator (similar behavior is expected for our new one)
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Arithmetic Level Countermeasures

Redundant number system =

• a way to improve the performance of some operations

• a way to represent a value with different representations

k

R1(k)

[R1(k)]P

R2(k)

[R2(k)]P

R3(k)

[R3(k)]P

R4(k)

[R4(k)]P

R5(k)

[R5(k)]P

R6(k)

[R6(k)]P

R7(k)

[R7(k)]P

. . .

. . .

Important property: ∀i [Ri (k)]P = [k]P

Proposed solution: use random redundant representations of k
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Double-Base Number System
Standard radix-2 representation:

k =
t−1∑
i=0

ki2
i = kt−1

2t−1

kt−2

2t−2

. . .

. . .

k2

22

k1

21

k0

20

t explicit digits

implicit weights

Digits: ki ∈ {0, 1}, typical size: t ∈ {160, . . . , 600}

Double-Base Number System (DBNS):

k =
n−1∑
j=0

kj2
aj 3bj =

kn−1

an−1

bn−1

. . .

. . .

. . .

k1

a1

b1

k0

a0

b0

n (2, 3)−terms

explicit “digits”

explicit ranks

aj , bj ∈ N, kj ∈ {1} or kj ∈ {−1, 1}, size n ≈ log t

DBNS is a very redundant and sparse representation: 1701 = (11010100101)2

1701 = 243 + 1458 = 2035 + 2136 = (1, 0, 5), (1, 1, 6)
= 1728− 27 = 2633 − 2033 = (1, 6, 3), (−1, 0, 3)
= 729 + 972 = 2036 + 2235 = (1, 0, 6), (1, 2, 5)
. . .
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Randomized DBNS Recoding of the Scalar k

encryption

signature

etc

p
ro

to
co

l
le

ve
l

[k]P

ADD(P,Q) DBL(P) TPL(P)

cu
rv

e
le

ve
l

x±y x×y . . .

fi
el

d
le

ve
l

On-the-fly DBNS random recoding for the scalar k
randomly recode windows of the scalar k on-the-fly:
1 + 2� 3 1 + 3� 22 1 + 23 � 32 . . .
control number of reductions (←) and expansions (→)

Point tripling operation
Q = TPL(P) = P + P + P

k ki

block time

recoding rulespossible rules

recoded ki (,ki+1)random choice

DBNS is redundant ⇒ security ↗
DBNS is sparse ⇒ 20–30 % speed ↗

Ref: [3] Chabrier, Pamula & Tisserand.
Asilomar 2009
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Conclusion
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Conclusion

• Physical attacks are very serious threats

• Attacks are more and more efficient (many variants, AI, DL)

• Security analysis and integration is mandatory at all levels
(specification, algorithm, operation, implementation, test, . . . )

• Security = function( secret value, attacker capabilities )

• Security = trade-off between performances, robustness and cost

• Security = computer science + microelectronics + mathematics

Current works examples:

• Secure processors and accelerators

• Hardware operators/accelerators with reduced activity variations

• Representation of numbers with error detection/correction features

• Circuit reconfiguration (representations, algorithms)

• Design space exploration with security objectives/metrics

• Methods/tools for automating security analysis

• CAD tools with security improvement capabilities
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Resources: Conferences, Workshops, Journals, etc

• International Association for Cryptologic Research (IACR)
Eprint Archives

• ACM Special Interest Group on Security, Audit and Control (SIGSAC)

• IEEE Computer Society’s Technical Committee on Security and
Privacy (TCSP)

• French national working group on Code & Crypto (C2) of the GDR IM

• French national working group on Security of Embedded Systems of
the GDR SoC

• Conferences, workshops: CHES, FDTC, COSADE, CARDIS,
CryptArchi . . .

• Journals: TCHES, Journal of Cryptographic Engineering, IEEE Trans.
on Computers, Circuits and Systems, VLSI Systems, . . ..

• http://www.crypto.ruhr-uni-bochum.de/en_sclounge.html

• http://www.schneier.com/
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informatique

Joan Gomez

2010

Le monde est mathématique, RBA
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Good Books (in French)

Cryptographie appliquée

Bruce Schneier

1997, 2ème édition

Wiley

ISBN: 2–84180–036–9

Micro et nano-électronique

Bases, Composants, Circuits

Hervé Fanet

2006

Dunod

ISBN: 2–10–049141–5
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Good Books (in English)

CMOS VLSI Design

A Circuits and Systems Perspective

Neil Weste and David Harris

3rd edition, 2004

Addison Wesley

ISBN: 0–321–14901–7

Power Analysis Attacks

Revealing the Secrets of Smart Cards

Stefan Mangard, Elisabeth Oswald and

Thomas Popp

2007

Springer

ISBN:978-0-387-30857-9
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Good Books (in English)

Handbook of Applied Cryptography

Alfred J. Menezes, Paul C. van Oorschot and

Scott A. Vanstone

2001

CRC Press

ISBN:0-8493-8523-7

Web: http://cacr.uwaterloo.ca/hac/

Arnaud Tisserand. CNRS – Lab-STICC. Introduction to Side Channel Attacks, ARCHI’19 56/57

http://cacr.uwaterloo.ca/hac/


The end, questions ?

Contact:

• mailto:arnaud.tisserand@univ-ubs.fr

• http://www-labsticc.univ-ubs.fr/~tisseran

• CNRS
Lab-STICC, Centre Recherche UBS
Rue St Maudé. BP 92116. 56321 Lorient cedex, France

Thank you
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