Summary

Introduction to Side Channel Attacks

Arnaud Tisserand

CNRS, Lab-STICC

ARCHI'19, Lorient

Introduction

Crytographic Background

Side Channel Attacks

Protections

Conclusion

Arnaud Tisserand. CNRS-Lab-STICC. Introduction to Side Channel Attacks, ARCHI'19

Applications with Security Requirements

- medical devices, *e*-health
- { home | building | factory } automation
- *e*-commerce
- transports
- communications: cell. phones, Internet, industrial networks,
- IOT, WSN, RFID...
- embedded systems
- { cloud | fog | edge | ... } computing
- smart { grids | cars | cities | buildings | ... }
- defense
- digital administration
- etc.

Arnaud Tisserand. CNRS-Lab-STICC. Introduction to Side Channel Attacks, ARCHI'19

Introduction

Security and Embedded Systems

Integrated circuits perform security tasks, somewhere in the system...

Examples where a close access is difficult:

Examples where a close access can be possible:

Arnaud Tisserand. CNRS-Lab-STICC. Introduction to Side Channel Attacks, ARCHI'19

5/57

Arnaud Tisserand. CNRS-Lab-STICC. Introduction to Side Channel Attacks, ARCHI'19

Crytographic Background

Cryptographic Features

Objectives:

- Confidentiality
- Integrity
- Authenticity
- Non-repudiation
- ...

Hash function

• Encryption

Digital signature

Random numbers generation

Cryptographic primitives:

• ...

Implementation issues:

- Performances: speed, delay, throughput, latency
- Cost: device (memory, size, weight), low power/energy consumption, design
- Security: protection against attacks

9/57

Alice wants to secretly send a message to Bob in such a way Eve (eavesdropper/spy) does not get any information

Arnaud Tisserand. CNRS-Lab-STICC. Introduction to Side Channel Attacks, ARCHI'19

10/57

Symmetric / Private-Key Cryptography

- A : Alice, B : Bob
- $\mathcal{M}:$ plain text/message
- \mathcal{E} : encryption/ciphering algorithm, \mathcal{D} : decryption/deciphering algorithm
- k: secret key to be shared by A and B
- $\mathcal{E}_k(\mathcal{M})$: encrypted text
- $\mathcal{D}_k(\mathcal{E}_k(\mathcal{M}))$: decrypted text
- E : eavesdropper/spy

Asymmetric / Public-Key Cryptography

- k: B's public key (known to everyone including E)
- $\mathcal{E}_{k}(\mathcal{M})$: ciphered text
- k': B's private key (must be kept secret)
- $\mathcal{D}_{k'}(\mathcal{E}_k(\mathcal{M}))$: deciphered text

Symmetric or Asymmetric Cryptography?

RSA Asymmetric Cryptosystem (1/2)

Advanced Encryption Standard (AES)

Published in 1978 by Ron Rivest, Adi Shamir and Leonard Adleman [12]

Key generation (Alice side)

- Choose two large prime integers p and q
- Compute the modulus *n* = *pq*
- Compute $\varphi(n) = (p 1)(q 1)$
- Choose an integer e such that 1 < e < arphi(n) and $\gcd(e, arphi(n)) = 1$
- Compute $d = e^{-1} \mod \varphi(n)$
- Private key (kept secret by Alice): d and also $p, q, \varphi(n)$
- Public key (published): (*n*, *e*)

RSA Asymmetric Cryptosystem (2/2)

Private key (Alice): d Public key (all): (n, e)

Encryption (Bob side):

- convert the message M to an integer m (1 < m < n and gcd(m, n) = 1)
- compute the cipher text $c = m^e \mod n$

Decryption (Alice side):

- compute $m = c^d \mod n$
- convert the integer m to the message ${\tt M}$

Theoretical security: integer factorization, *i.e.* computing (p, q) knowing n, is not possible when n is large enough

Arnaud Tisserand. CNRS-Lab-STICC. Introduction to Side Channel Attacks, ARCHI'19

17/57

Modular Exponentiation

Computation of operations such as : $a^b \mod n$

$$a^b = \underbrace{a \times a \times a \times a \times \dots \times a \times a \times a}_{a \text{ appears } b \text{ times}}$$

Order of magnitude of exponents: $2^{\text{size of exponent}} \rightsquigarrow 2^{1024} \dots 2^{2048} \dots 2^{4096}$

Fast exponentiation principle:

$$a^b = (a^2)^{\frac{b}{2}}$$
 when b is even
= $a \times (a^2)^{\frac{b-1}{2}}$ when b is odd

Least significant bit of the exponent: $\mathtt{bit}=0 \rightsquigarrow \mathsf{even} \text{ and } \mathtt{bit}=1 \rightsquigarrow \mathsf{odd}$

Arnaud Tisserand. CNRS-Lab-STICC. Introduction to Side Channel Attacks, ARCHI'19

18/57

Square and Multiply Algorithm

input: a, b, n where $b = (b_{t-1}b_{t-2}...b_1b_0)_2$ output: $a^b \mod n$ r = 1for i from 0 to t - 1 do if $b_i = 1$ then

 $r = r \cdot a \mod n$ endif $a = a^2 \mod n$ endfor return r

This is the right to left version (there exists a left to right one)

Side Channel Attacks

Main Types of Attacks

$\mathsf{EMR} = \mathsf{Electromagnetic}$ radiation

Arnaud Tisserand. CNRS-Lab-STICC. Introduction to Side Channel Attacks, ARCHI'19

21/57

Side Channel Attacks (SCAs) (2/2)

General principle: measure external parameter(s) on a running device in order to deduce internal (secret) informations

Side Channel Attacks (SCAs) (1/2)

Attack: attempt to find, without any knowledge about the secret:

- the message (or parts of the message)
- informations on the message
- the secret (or parts of the secret)

"Old style" side channel attacks:

Arnaud Tisserand. CNRS-Lab-STICC. Introduction to Side Channel Attacks, ARCHI'19

What Should be Measured?

Answer: everything that can "enter" and/or "get out" in/from the device

- time
- power consumption
- electromagnetic radiation
- temperature
- sound
- number of cache misses
- number and type of error messages
- ...

The measured parameters may provide informations on:

- global behavior (temperature, power, sound...)
- local behavior (EMR, # cache misses...)

Power Consumption Analysis

General principle:

- 1. measure the current i(t) in the cryptosystem
- 2. use those measurements to "deduce" secret informations

Arnaud Tisserand. CNRS-Lab-STICC. Introduction to Side Channel Attacks, ARCHI'19

Differences & External Signature

"Read" the Traces

Arnaud Tisserand. CNRS-Lab-STICC. Introduction to Side Channel Attacks, ARCHI'19

26/57

Simple Power Analysis (SPA)

Source: [6]

25/57

SPA in Practice

Limits of the SPA

General principle:

Methods: interpretation of the differences in

- control signals
- computation time
- operand values
- ...

Arnaud Tisserand. CNRS-Lab-STICC. Introduction to Side Channel Attacks, ARCHI'19

29/57

Important: a small difference may be evaluated has a noise during the measurement \rightarrow traces cannot be distinguished

Question: what can be done when differences are too small?

Answer: use statistics over several traces

Arnaud Tisserand. CNRS-Lab-STICC. Introduction to Side Channel Attacks, ARCHI'19

Differential Power Analysis (DPA)

Differential Power Analysis (DPA) Example

Template Attack

Electromagnetic Radiation Analysis (1/2)

General principle: use a probe to measure the EMR

EMR measurement:

- global EMR with a large probe
- local EMR with a micro-probe

Arnaud Tisserand. CNRS-Lab-STICC. Introduction to Side Channel Attacks, ARCHI'19

Electromagnetic Radiation Analysis (2/2)

EMR analysis methods:

- simple electromagnetic analysis: SEMA
- differential electromagnetic analysis: DEMA

Local EMR analysis may be used to determine internal architecture details, and then select weak parts of the circuit for the attack

→ X-Y table

Side Channel Attack on Elliptic Curve Crypto

Activity in a Processor

Operation to be executed: $r \leftarrow x + a[i]$

- AS: ALU status
- PIS: pipeline management, bypasses, memory hierarchy, branch predictor, monitoring, etc)

Arnaud Tisserand. CNRS-Lab-STICC. Introduction to Side Channel Attacks, ARCHI'19

37/57

Protections, Countermeasures

Principles for preventing attacks:

- embed additional protection blocks
- modify the original circuit into a secured version
- application levels: circuit, architecture, algorithm, protocol...

Countermeasures:

- electrical shielding
- detectors, estimators, decoupling
- use uniform computation durations and power consumption
- use detection/correction codes (for fault injection attacks)
- provide a random behavior (algorithms, representation, operations...)
- add noise (e.g. masking, useless instructions/computations)
- circuit reconfiguration (algorithms, block location, representation of values...)

Protections

Arnaud Tisserand. CNRS-Lab-STICC. Introduction to Side Channel Attacks, ARCHI'19

Low-Level Coding and Circuit Activity

Assumptions:

- **b** is a bit (i.e. $b \in \{0, 1\}$, logical or mathematical value)
- electrical states for a wire : V_{DD} (logical 1) or GND (logical 0)

Low-level codings of a bit:

	b = 0	b = 1
standard	GND	V _{DD}
dual rail	$ \begin{array}{c} \hline & r_0 = V_{\text{DD}} \\ r_1 = \text{GND} \end{array} \right] (1,0)_{\text{DR}} $	$ \begin{array}{c} & & \\ & & $

Circuit Logic Styles

Countermeasure principles: uniformize circuit activity and exclusive coding

Solution based on precharge logic and dual-rail coding:

Solution based on validity line and dual-rail coding:

Important overhead: silicon area and local storage (registers)

Arnaud Tisserand. CNRS-Lab-STICC. Introduction to Side Channel Attacks, ARCHI'19

41/57

43/57

Countermeasure: Architecture

Increase internal parallelism:

- replace one fast but big operator
- by several instances of a small but slow one

Arnaud Tisserand. CNRS-Lab-STICC. Introduction to Side Channel Attacks, ARCHI'19

42/57

Protected (Old) Accelerator

Warning: old dedicated accelerator (similar behavior is expected for our new one) Arnaud Tisserand. CNRS-Lab-STICC. Introduction to Side Channel Attacks, ARCHI'19

Arithmetic Level Countermeasures

Redundant number system =

- a way to improve the performance of some operations
- a way to represent a value with different representations

Important property: $\forall i \quad [R_i(k)]\mathbf{P} = [k]\mathbf{P}$

Proposed solution: use random redundant representations of k

Arnaud Tisserand. CNRS-Lab-STICC. Introduction to Side Channel Attacks, ARCHI'19

45/57

Double-Base Number System

Standard radix-2 representation:

$$k = \sum_{i=0}^{t-1} k_i 2^i = \begin{bmatrix} 2^{t-1} & 2^{t-2} & \cdots & 2^2 & 2^1 & 2^0 & \text{implicit weights} \\ \hline k_{t-1} & k_{t-2} & \cdots & k_2 & k_1 & k_0 & t \text{ explicit digits} \end{bmatrix}$$

Digits: $k_i \in \{0, 1\}$, typical size: $t \in \{160, ..., 600\}$

Double-Base Number System (DBNS):

n-1	k_{n-1}	• • •	k_1	k_0	n (2,3)-terms	
$k = \sum k_j 2^{a_j} 3^{b_j} =$	<i>a</i> _{<i>n</i>-1}		a_1	<i>a</i> 0	explicit "digits"	
$\overline{j=0}$	b_{n-1}		b_1	<i>b</i> 0	explicit ranks	
$a_j, b_j \in \mathbb{N}$, $k_j \in \{1\}$ c	$k_j \in \mathbb{N}, k_j \in \{1\} \text{ or } k_j \in \{-1, 1\}, \text{size } n pprox \log t$					

DBNS is a very redundant and sparse representation: 1701 = (11010100101)₂

1701	=	243 + 1458	=	$2^0 3^5 + 2^1 3^6$	=	(1, 0, 5), (1, 1, 6)
	=	1728 - 27	=	$2^{6}3^{3} - 2^{0}3^{3}$	=	(1, 6, 3), (-1, 0, 3)
	=	729 + 972	=	$2^{0}3^{6} + 2^{2}3^{5}$	=	(1, <mark>0, 6</mark>), (1, <mark>2, 5</mark>)
	• • •					

Arnaud Tisserand. CNRS-Lab-STICC. Introduction to Side Channel Attacks, ARCHI'19

46/57

Randomized DBNS Recoding of the Scalar k

Conclusion

Conclusion

- Physical attacks are very serious threats
- Attacks are more and more efficient (many variants, AI, DL)
- Security analysis and integration is mandatory at all levels (specification, algorithm, operation, implementation, test, ...)
- Security = function(secret value, attacker capabilities)
- Security = trade-off between performances, robustness and cost
- Security = computer science + microelectronics + mathematics

Current works examples:

- Secure processors and accelerators
- Hardware operators/accelerators with reduced activity variations
- Representation of numbers with error detection/correction features
- Circuit reconfiguration (representations, algorithms)
- Design space exploration with security objectives/metrics
- Methods/tools for automating security analysis
- CAD tools with security improvement capabilities

Arnaud Tisserand. CNRS-Lab-STICC. Introduction to Side Channel Attacks, ARCHI'19

49/57

Resources: Conferences, Workshops, Journals, etc

- International Association for Cryptologic Research (IACR) Eprint Archives
- ACM Special Interest Group on Security, Audit and Control (SIGSAC)
- IEEE Computer Society's Technical Committee on Security and Privacy (TCSP)
- French national working group on Code & Crypto (C2) of the GDR IM
- French national working group on Security of Embedded Systems of the GDR SoC
- Conferences, workshops: CHES, FDTC, COSADE, CARDIS, CryptArchi . . .
- Journals: TCHES, Journal of Cryptographic Engineering, IEEE Trans. on Computers, Circuits and Systems, VLSI Systems,
- http://www.crypto.ruhr-uni-bochum.de/en_sclounge.html
- http://www.schneier.com/

Arnaud Tisserand. CNRS-Lab-STICC. Introduction to Side Channel Attacks, ARCHI'19

50/57

References I

- H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan. The sorcerer's apprentice guide to fault attacks. *Proceedings of the IEEE*, 94(2):370–382, February 2006.
- [2] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache. Fault injection attacks on cryptographic devices: Theory, practice, and countermeasures. *Proceedings of the IEEE*, 100(11):3056–3076, November 2012.
- [3] T. Chabrier, D. Pamula, and A. Tisserand. Hardware implementation of DBNS recoding for ECC processor. In Proc. 44rd Asilomar Conference on Signals, Systems and Computers, pages 1129–1133, Pacific Grove, California, U.S.A., November 2010. IEEE.
- [4] D. Karaklajic, J.-M. Schmidt, and I. Verbauwhede. Hardware designer's guide to fault attacks. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 21(12):2295–2306, December 2013.
- [5] P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In Proc. Advances in Cryptology (CRYPTO), volume 1109 of LNCS, pages 104–113. Springer, August 1996.

[6] P. C. Kocher, J. Jaffe, and B. Jun Differential power analysis.

In Proc. Advances in Cryptology (CRYPTO), volume 1666 of LNCS, pages 388–397. Springer, August 1999.

[7] F. Koeune and F.-X. Standaert.

A tutorial on physical security and side-channel attacks. In 5th International School on Foundations of Security Analysis and Design (FOSAD), volume 3655 of LNCS, pages 78–108. Springer-Verlag, 2005.

[8] D. Pamula.

Arithmetic Operators on $GF(2^m)$ for Cryptographic Applications: Performance - Power Consumption - Security Tradeoffs. Phd thesis, University of Rennes 1 and Silesian University of Technology, December 2012.

References II

D. Pamula, E. Hrynkiewicz, and A. Tisserand.
Analysis of GF(2²³³) multipliers regarding elliptic curve cryptosystem applications.

In 11th IFAC/IEEE International Conference on Programmable Devices and Embedded Systems (PDeS), pages 271–276, Brno, Czech Republic, May 2012.

- [10] D. Pamula and A. Tisserand. GF(2^m) fnite-field multipliers with reduced activity variations. In 4th International Workshop on the Arithmetic of Finite Fields, volume 7369 of LNCS, pages 152–167, Bochum, Germany, July 2012. Springer.
- [11] D. Pamula and A. Tisserand. Fast and secure finite field multipliers. In Proc. 18th Euromicro Conference on Digital System Design (DSD), pages 653–660, Madeira, Portugal, August 2015.
- [12] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key cryptosystems. *Communications of the ACM*, 21(2):120–126, February 1978.

Good Books (in French)

Histoire des codes secrets Simon Singh 1999 Livre de poche

Mathématiques, espionnage et piratage informatique Joan Gomez 2010 Le monde est mathématique, RBA

Arnaud Tisserand, CNRS-Lab-STICC, Introduction to Side Channel Attacks, ARCHI'19

53/57

Good Books (in French)

Cryptographie appliquée Bruce Schneier 1997, 2ème édition Wiley ISBN: 2-84180-036-9

Micro et nano-électronique Bases, Composants, Circuits Hervé Fanet 2006 Dunod ISBN: 2-10-049141-5

Arnaud Tisserand. CNRS-Lab-STICC. Introduction to Side Channel Attacks, ARCHI'19

54/57

Good Books (in English)

Handbook of Applied Cryptography

Alfred J. Menezes. Paul C. van Oorschot and Scott A. Vanstone 2001 CRC Press ISBN:0-8493-8523-7 Web: http://cacr.uwaterloo.ca/hac/

Power Analysis Attacks Revealing the Secrets of Smart Cards Stefan Mangard, Elisabeth Oswald and Thomas Popp 2007 Springer ISBN:978-0-387-30857-9

Good Books (in English)

CMOS VLSI Design A Circuits and Systems Perspective

Neil Weste and David Harris 3rd edition, 2004 Addison Wesley ISBN: 0-321-14901-7

The end, questions ?

Contact:

- mailto:arnaud.tisserand@univ-ubs.fr
- http://www-labsticc.univ-ubs.fr/~tisseran
- CNRS Lab-STICC, Centre Recherche UBS Rue St Maudé. BP 92116. 56321 Lorient cedex, France

Thank you

Arnaud Tisserand. CNRS-Lab-STICC. Introduction to Side Channel Attacks, ARCHI'19

57/57